
1 

 

Haystack – a computational molecular data notebook 

A Research Data Management (RDM) “Green Shoots” Pilots 

Project Report by Clyde Fare and Michael Bearpark 

Imperial College London 
 

This project was funded as part of Imperial College’s RDM “Green Shoots” Programme. In 2014, the 

Vice-Provost, Research, approved an allocation of £100K for academically-driven projects to identify 

and generate exemplars of best practice in RDM, specifically frameworks and prototypes that would 

comply with key funder RDM policies and the College position. The call for projects outlined that 

frameworks could be based either on original ideas or integrating existing solutions into the research 

process, improving its efficacy or the breadth of its usage. There was an expectation that solutions 

would support open access for data; solutions that supported Open Innovation were strongly 

encouraged. 

Six projects were funded, covering different disciplines, faculties and research areas. The projects 

ran for six months, finishing at the end of 2014. Project reports were made available in 2015. 

For more information on the programme and projects please visit: 

http://www3.imperial.ac.uk/researchsupport/rdm/policy/greenshoots 

 

 

 

 

This work is licensed under a Creative Commons Attribution 4.0 International License. 

  

http://www3.imperial.ac.uk/researchsupport/rdm/policy/greenshoots
http://creativecommons.org/licenses/by/4.0/


2 

 

Haystack – a computational molecular 
data notebook 

Clyde Fare, Michael Bearpark; Imperial College London 

Within computational chemistry, sharing and reuse of data currently lags behind other research 

fields despite the significant benefit of open data to the advancement of science. In this summer 

project we extended a working prototype of a computational chemical notebook, making it available 

for all on github14. This notebook enables computational molecular researchers to easily share a 

curated subset of their results and document how those results were generated. 

Context 

Research councils increasingly require research data to be made available for projects they fund. 

Similarly some journals1 now require authors to make their research data available. This push has led 

to the development of platforms enabling archiving and sharing of data 2. There have been attempts 

to make the codes used in scientific research more open and accessible so that the accuracy of their 

calculations can be evaluated 3,4 alongside experiments with open-notebook science 5, where all 

research output is made available as it happens. In the field of computational chemistry the culture 

of sharing data is not yet established although the Quixote project 8 – an initiative to add metadata 

and archive calculations to web-accessible databases – is under way. 

One of the things missing from the theoretical chemical tool set is a means of including a curated 

part of the actual research process alongside the published results. A painless way of capturing the 

process used to create the data, plots and analysis etc. (such that it could be made available 

alongside a published article without requiring significant additional effort from the authors) would 

greatly increase the transparency and reproducibility of the published research literature. 

In an attempt to work towards this goal we built upon the IPython Notebook 6,7 – a computational 

notebook based on the Python programming language and two prominent python based electronic 

structure frameworks: the atomic simulation environment10 and cclib11. Our prototype 

computational chemical notebook added the following functionality: 

 Calculations using mainstream computational chemistry software can be set up. 

 Calculations can be submitted to run on a high-performance computing cluster. 

 Data from completed calculations can be retrieved and visualised. 

The prototype was presented at the PyData 2014 conference (“Changing the way scientists, 

engineers, and analysts perceive big data”) and the Thomas Young Centre for materials simulation 

and at Euro Scientific Python 2014. 

Problems 

In order for our prototype to be useful to a wider audience it required modification to make it 

general to computational chemistry rather than specific to the individual setup used by the Bearpark 



3 

 

group. It also required updating to keep up with changes in its parent project the IPython notebook. 

The prototype was based on numerous scientific libraries making installation a lengthy and 

somewhat challenging process; this overhead represented a significant barrier to adoption. A further 

problem was the inability of a single notebook 'page' to capture all the research that occurs in a 

project. Thus a means of connecting and sharing a collection of notebook pages in a sensible manner 

was needed. 

Approach 

The aforementioned issues separated into three domains: refactoring and updating the prototype, 

testing to weed out bugs, and adding a project tree feature. 

For refactoring we sought to separate functionality that should be general e.g. interfacing with 

computational clusters, from code specific to our particular choice of quantum chemical package. 

This would allow others to use their own quantum chemical codes within the notebook. We also 

aimed to update the prototype to use the latest version of IPython and the molecular visualisation 

tool to its successor JSMol12 to solve browser compatibility issues. Finally we aimed to make use of 

commonly available open source tools13 to make our code and all its dependencies easy to install on 

any of the three major operating systems so that anyone with an internet connection could easily 

and freely obtain and make use of it. 

Our main feature enabled by the latest version of IPython was the construction of a means to keep 

track of an entire project composed of multiple notebook pages. We imagined a project 'tree' (i.e. a 

linked set of nodes) where each node in the tree corresponded to a notebook page containing a set 

of calculations and their analysis. The entirety of research involved in a project would be contained 

within this tree. This project tree would be implemented as an alternative notebook dashboard. 

For testing, a UROP student was tasked with completing a simple quantum chemical project using 

the notebook to annotate and keep track of the calculations he performed. He was also to explore 

the features of the notebook proposed above and test installation on different systems. 

Achievements 

We successfully completed updating of our notebook code to use the latest IPython 2.x base and our 

molecular visualiser to use the JSMol package. We refactored the code allowing calculations 

performed with the popular Gaussian quantum chemistry package such that it was independent of 

our particular computational resources and could be used by anyone with access to Gaussian. We 

further removed dependence of the notebook code on our Gaussian interface allowing any of the 

many quantum chemistry packages with interfaces defined in the atomic simulation environment to 

be used.  

A project tree view was implemented allowing a collection of notebook pages to be linked together 

to represent a project. Further, a means of selecting collections of nodes and archiving them for 

inclusion in a publication was created. Installation was streamlined by constructing recipes using the 

conda build environment popular in the scientific python community. This makes installing all of the 

necessary libraries our code depends upon automatic, allowing easy installation on all operating 

systems. Finally our code base has been made available via github and has a BSD license. 



4 

 

Our UROP student successfully undertook an undergraduate project using the computational 

chemical notebook. And both a PhD student and a new Msci student are making heavy use of the 

computational notebook. 

During the project period we presented a lightning talk at the scientific python 2014 conference. 

 

Lessons learned 

In terms of the development process the technical debt incurred during the construction of the 

prototype took longer than anticipated to pay off. This is a general feature of software development 

where a higher pace of development leads to code that is not robust and hence a time debt that 

needs to be paid to rewrite the code in a more robust form. In our case our prototype builds upon 

several other tools and libraries that were themselves in development. The rapid pace of 

development of these libraries slightly complicated our situation. A better approach would have 

been to decide to stick with particular versions of the libraries whilst refactoring our own code and 

then choose which libraries to update. Whilst in some way this means more code will need to be 

rewritten it would have simplified the process. 

Observing the working habits of our UROP student during his undergraduate project we saw that 

there were multiple ways of making use of the chemical notebook. This meant unexpected choices 

were made, some of which were novel and meant he could perform calculations in an efficient 

manner. However, some meant the notebooks themselves no longer constituted reproducible 

research as he had stripped out of them the data needed to reproduce the calculations. The power 

of the computation tools available reinforces the need for a tight coupling between the tools 

available to make research reproducible and working habits that promote reproducible research. 

A further point is the dependence of our project on understanding the basics of a programming 

language. Whilst usage of the notebook does not require a high degree of programming skill and the 

Python language itself is designed to be as readable as possible, some programming like activity is 

necessary and so consequently there is some overhead to using our tool. 

References 

1. PLOS one data policy. at <http://www.plosone.org/static/policies.action#sharing> 

2. Figshare. at <http://figshare.com/> 

3. Software Carpentry. at <http://software-carpentry.org/> 

4. Mozilla Science Labs. at <http://mozillascience.org/> 

5. Open Notebook Science. at <http://www.nature.com/news/2008/080915/full/455273a.html> 

6. Pérez, F. & Granger, B. E. IPython Notebook. at <http://ipython.org/notebook> 

7. Pérez, F. & Granger, B. E. IPython: a System for Interactive Scientific Computing. Comput. Sci. Eng. 

9, 21–29 (2007). 

http://www.plosone.org/static/policies.action#sharing
http://figshare.com/
http://software-carpentry.org/
http://mozillascience.org/
http://www.nature.com/news/2008/080915/full/455273a.html
http://ipython.org/notebook


5 

 

8. Adams, S. et al. The Quixote project: Collaborative and Open Quantum Chemistry data 

management in the Internet age. J. Cheminform. 3, 38 (2011). 

9. Alfred Sloan Foundation Grant. at <http://ipython.org/sloan-grant.html> 

10. O’boyle, N. M., Tenderholt, A. L. & Langner, K. M. cclib: A library for package-independent 

computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008). 

11. Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic 

structure code. Comput. Sci. Eng. 4, 56–66 (2002).  

12. Hanson R et al. Jsmol and the next-generation of web-based representation of 3d molecular 

 structure as applied to protopedia. Israel J. chemistry 53, 207-216 (2013) 

13. Oliphant, T, Anaconda at <http://conda.pydata.org/> 

14. Fare, C cc_notebook at <https://github.com/Clyde-fare/cc_notebook> 

 

 

http://ipython.org/sloan-grant.html
http://conda.pydata.org/
https://github.com/Clyde-fare/cc_notebook

